skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rockwell, Fulton E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary The onset of stomatal closure reduces transpiration during drought. In seed plants, drought causes declines in plant water status which increases leaf endogenous abscisic acid (ABA) levels required for stomatal closure. There are multiple possible points of increased belowground resistance in the soil–plant atmospheric continuum that could decrease leaf water potential enough to trigger ABA production and the subsequent decreases in transpiration.We investigate the dynamic patterns of leaf ABA levels, plant hydraulic conductance and the point of failure in the soil–plant conductance in the highly embolism‐resistant speciesCallitris tuberculatausing continuous dendrometer measurements of leaf water potential during drought.We show that decreases in transpiration and ABA biosynthesis begin before any permanent decreases in predawn water potential, collapse in soil–plant hydraulic pathway and xylem embolism spread.We find that a dynamic but recoverable increases in hydraulic resistance in the soil in close proximity to the roots is the most likely driver of declines in midday leaf water potential needed for ABA biosynthesis and the onset of decreases in transpiration. 
    more » « less
  2. Abstract BackgroundRecent reports of extreme levels of undersaturation in internal leaf air spaces have called into question one of the foundational assumptions of leaf gas exchange analysis, that leaf air spaces are effectively saturated with water vapour at leaf surface temperature. Historically, inferring the biophysical states controlling assimilation and transpiration from the fluxes directly measured by gas exchange systems has presented a number of challenges, including: (1) a mismatch in scales between the area of flux measurement, the biochemical cellular scale and the meso-scale introduced by the localization of the fluxes to stomatal pores; (2) the inaccessibility of the internal states of CO2 and water vapour required to define conductances; and (3) uncertainties about the pathways these internal fluxes travel. In response, plant physiologists have adopted a set of simplifying assumptions that define phenomenological concepts such as stomatal and mesophyll conductances. ScopeInvestigators have long been concerned that a failure of basic assumptions could be distorting our understanding of these phenomenological conductances, and the biophysical states inside leaves. Here we review these assumptions and historical efforts to test them. We then explore whether artefacts in analysis arising from the averaging of fluxes over macroscopic leaf areas could provide alternative explanations for some part, if not all, of reported extreme states of undersaturation. ConclusionsSpatial heterogeneities can, in some cases, create the appearance of undersaturation in the internal air spaces of leaves. Further refinement of experimental approaches will be required to separate undersaturation from the effects of spatial variations in fluxes or conductances. Novel combinations of current and emerging technologies hold promise for meeting this challenge. 
    more » « less
  3. Abstract A frequently expressed viewpoint across the Earth science community is that global soil moisture estimates from satellite L‐band (1.4 GHz) measurements represent moisture only in a shallow surface layer (0–5 cm) and consequently are of limited value for studying global terrestrial ecosystems because plants use water from deeper rootzones. Using this argumentation, many observation‐based land surface studies avoid satellite‐observed soil moisture. Here, based on peer‐reviewed literature across several fields, we argue that such a viewpoint is overly limiting for two reasons. First, microwave soil emission depth considerations and statistical considerations of vertically correlated soil moisture information together indicate that L‐band measurements carry information about soil moisture extending below the commonly referenced 5 cm in many conditions. However, spatial variations of effective depths of representation remain uncertain. Second, in reviewing isotopic tracer field studies of plant water uptake, we find a prevalence of vegetation that primarily draws moisture from these upper soil layers. This is especially true for grasslands and croplands covering more than a third of global vegetated surfaces. Even some deeper‐rooted species (i.e., shrubs and trees) preferentially or seasonally draw water from the upper soil layers. Therefore, L‐band satellite soil moisture estimates are more relevant to global vegetation water uptake than commonly appreciated (i.e., relevant beyond only shallow soil processes like soil evaporation). Our commentary encourages the application of satellite soil moisture across a broader range of terrestrial hydrosphere and biosphere studies while urging more rigorous estimates of its effective depth of representation. 
    more » « less
  4. Summary The hydraulic system of vascular plants and its integrity is essential for plant survival. To transport water under tension, the walls of xylem conduits must approximate rigid pipes. Against this expectation, conduit deformation has been reported in the leaves of a few species and hypothesized to function as a ‘circuit breaker’ against embolism. Experimental evidence is lacking, and its generality is unknown.We demonstrated the role of conduit deformation in protecting the upstream xylem from embolism through experiments on three species and surveyed a diverse selection of vascular plants for conduit deformation in leaves.Conduit deformation in minor veins occurred before embolism during slow dehydration. When leaves were exposed to transient increases in transpiration, conduit deformation was accompanied by large water potential differences from leaf to stem and minimal embolism in the upstream xylem. In the three species tested, collapsible vein endings provided clear protection of upstream xylem from embolism during transient increases in transpiration.We found conduit deformation in diverse vascular plants, including 11 eudicots, ginkgo, a cycad, a fern, a bamboo, and a grass species, but not in two bamboo and a palm species, demonstrating that the potential for ‘circuit breaker’ functionality may be widespread across vascular plants. 
    more » « less